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Abstract

Homelessness is an issue in urban areas, and provid-
ing and maintaining public services for this population has
been a challenge due to two main reasons: (1) this popu-
lation is mobile and does not have a permanent residence.
The traditional annual point-in-time surveys conducted by
the Department of Housing and Urban Development (HUD)
in the U.S. are too infrequent to address this concern; (2)
direct tracking of this population raises significant privacy
concerns. To address these limitations, this project pro-
poses an indirect and privacy-preserving computer vision-
based approach by monitoring street-level public service in-
frastructure using vehicle-mounted cameras. Specifically,
we focus on quantifying organic food waste in public trash
bins as a proxy for assessing inefficiencies in food distri-
bution and city sanitation. Our pipeline consists of two
main models: the first detects trash bins in video frames,
and the second estimates the volume of organic waste us-
ing infrared imagery. We used our bin detection model to
obtain the region of interest in the thermal images where
the quantification model would then predict the percentage
of organic wastes. We evaluated our system based on bin
detection accuracy from infrared video and mean squared
error in organic content quantification. This approach pro-
vides a novel, scalable, and non-intrusive solution for en-
abling real-time optimization of public services in urban
environments.

1. Introduction

Homelessness poses a persistent challenge in urban
environments, particularly in the equitable and efficient
delivery of public services. Traditional data collection
methods, such as the U.S. Department of Housing and
Urban Development’s annual point-in-time surveys, are too
infrequent to capture the mobility patterns of the unhoused
population [9]. Furthermore, direct tracking methods

Pin Li
Stanford University

pinli@stanford.edu

Seoyoung Oh
Stanford University
syoh99@stanford.edu

introduce significant privacy concerns. In response, we
propose an indirect, privacy-preserving computer vision
approach that monitors the distribution and use of pub-
lic services—specifically food distribution—by analyzing
trash bins along city streets using vehicle-mounted cameras.
Organic food waste in public bins serves as a meaningful
proxy for understanding inefficiencies in food distribution
systems. By identifying patterns of discarded food across
different neighborhoods, we aim to inform more effective
public service planning, optimize trash collection sched-
ules, and support broader urban sustainability goals.

Our approach addresses two primary tasks: (1) detecting
trash bins in thermal video frames, and (2) estimating the
quantity of organic waste within these bins. To train our
models, we collected a paired RGB and thermal video
dataset in a controlled laboratory-like field setup using
a GoPro and a stationary infrared camera under outdoor
conditions. The dataset features two distinct types of trash
bins, each filled with varying levels of organic waste.
While our long-term goal is to deploy this system in public
settings, the current training and evaluation are conducted
on this controlled dataset. The experimental setup was
designed to minimize uncontrolled variables such as
lighting and background clutter, while still preserving
aspects of real-world variability, including different bin
geometries and organic content types. This setup enables
reliable supervised learning while maintaining relevance
to eventual deployment scenarios, serving as a proof of
concept.

In the domain of waste detection and classification,
Shen et al. [6] developed a vision-based smart bin system
for sorting recyclables and organics, while Minarni et al.
[7] and Sathish et al. [2] explored deep learning models for
real-time garbage detection using CNN and region-based
methods. These works, however, primarily focus on static
or indoor setups, limiting their generalizability to dynamic



urban environments. In urban scene understanding, object
detection models such as YOLOv5[4, 3] have shown strong
performance in recognizing elements in complex street
scenes. We leverage these models for robust bin detection
across video frames, with potential fine-tuning for our
specific use case. Thermal imaging, commonly used in
industrial inspection and energy diagnostics, has rarely
been applied to public waste analysis. Our work extends
its use to estimate the volume of organic content, where
challenges include occlusions, mixed-material waste, and
low frame rates.

In summary, we present a novel computer vision pipeline
that indirectly monitors food waste and public bin usage
in urban environments. Our contributions include collect-
ing a dual-modality dataset, a bin detection pipeline, and a
thermal-based organic waste quantification model evaluated
using field data.

2. Problem Statement

This work focuses on automating the monitoring of or-
ganic waste levels in trash bins using thermal imagery. The
problem is formulated as a two-stage pipeline comprising
the following core tasks:

* Trash Bin Detection: The first stage involves detect-
ing trash bins within thermal video frames captured in
controlled outdoor environment. This includes local-
izing each bin using bounding boxes. Accurate bin
detection is essential to isolate the region of interest,
minimizing background noise and ensuring that subse-
quent quantification is applied only to relevant image
regions. A YOLOv5-based object detection model is
employed for this task, trained specifically on thermal
images of bins.

* Organic Waste Quantification: The second stage in-
volves estimating the percentage of organic waste con-
tained within each detected bin. Given a cropped ther-
mal image of a bin, the goal is to infer a continu-
ous value representing the volume fraction of organic
waste (e.g., 0% to 85%). This is treated as a regres-
sion problem, where a quantification model is trained
on labeled thermal images with known organic content
levels. Accurate estimation enables real-time assess-
ment of waste composition, which can be valuable for
automated sorting, recycling, or disposal strategies.

3. Methodology

The overall workflow consists of four main stages: data
collection, data preprocessing, bin detection, and organic
content quantification. The various steps of this pipeline is
illustrated in Figure[I]
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Figure 1: Thermal image processing and training pipeline

3.1. Data Collection

To train and evaluate our system, we collect data from
outdoor environment under natural daylight with known
compositions of organic waste in the bin. Figure 2] presents
our team during data collection in the outdoor experimen-
tal setup. A portable and fixed-relative RGB—thermal cam-
era pair was employed to capture synchronized video data.
Figure [3] illustrates the top and front views of the camera
configuration, showing the spatial arrangement of the RGB
(GoPro) and thermal sensors. The GoPro was mounted on a
square plastic enclosure to ensure stability, while preserving
portability. Although the absolute position of the camera
rig was not rigidly fixed, the relative alignment between the
RGB and thermal cameras was maintained throughout all



(a) Top

(b) Front

Figure 3: Different views of the GoPro and infrared camera
set-up.

recordings. As shown in the front view, the thermal camera
was affixed to the front face of the enclosure, with its sen-
sor exposed as a small chip-like element. The thermal feed
was monitored and recorded in real-time via a laptop con-
nection. For each trash bin and fill level, we recorded video
sequences by manually moving the camera setup in a cir-
cular trajectory around the bin, enabling multi-view capture
from various angles.

Trash bins were loaded with controlled proportions of
organic material at 0%, 10%, 30%, 50%, 70%, and 85% by
volume of the bins. Two distinct types of bins were used
in the experiment: (1) a smaller bin with a lid and handle,
whose appearance varies significantly with viewing angle

(a) Second type (30%)

(b) First type (85%)

Figure 4: Example thermal views of two trash bin types at
different organic waste levels.

due to its asymmetric geometry, and (2) a larger, symmetri-
cal bin without a lid. The organic content consisted of rep-
resentative household food waste, including banana peels,
tangerines, tomatoes, and meat products. Figure [] illus-
trates how both the thermal appearance and visible geom-
etry of the bins vary as a function of fill level, material type,
and bin design.

3.2. Data Preprocessing

We collected a paired RGB and thermal (IR) video
dataset, annotated with six levels of organic waste filling:
0%, 10%, 30%, 50%, 70%, and 85%. Although the RGB
and thermal video streams were synchronized temporally,
slight spatial misalignments were observed due to the
physical separation of the two sensors. Each video stream
was decomposed into individual frames at 5 FPS using
FFmpeg.

While our initial plan involved performing bin detection
on the RGB frames and transferring the corresponding
bin locations to the thermal domain, accurate pixel-level
registration between the two modalities proved challenging
due to the absence of a shared lens and the spatial offset
between sensors. In the interest of time, and to focus
on demonstrating the core proof of concept, we opted to
proceed using only the thermal frames for organic waste
quantification. To isolate the region of interest in the
thermal image, we trained a bin detection model on the
thermal frames (described in detail in a later section). This
model produced bounding boxes around detected bins
for all the thermal images. We then cropped the thermal
images using these bounding boxes and used the result-
ing regions for subsequent quantification of organic content.

After cropping the thermal images to extract the region
of interest corresponding to each bin, we applied horizon-
tal flipping as a form of data augmentation. This transfor-
mation preserves the semantic content of the images while
improving the generalizability of the quantification model.
Following augmentation, we obtained a total of 4,972 la-
beled images for training. Since the cropped regions varied



in size, we standardized the input dimensions by identifying
the maximum width and height across all cropped images
and applying zero-padding to match this size. All images
were padded to a uniform shape of 84 x 79, resulting in an
input tensor of (4972, 84,79, 3).

3.3. Trash Bin Detection

We focus on the task of localizing trash bins in thermal
video data collected under outdoor conditions. Using
Labellmg [8], we manually annotated bounding boxes
for the trash_bin class in a controlled environment. The
annotations were initially exported in XML format with
absolute pixel coordinates. To adapt these for YOLOVS, we
developed a custom Python script to convert the bounding
boxes into the required format by computing the center
coordinates, width, and height, and normalizing them with
respect to the image dimensions.

At this stage, annotations were binary—only the pres-
ence and location of trash bins were considered, without
regard to the waste fill level. To minimize potential bias
from bin type or viewing angle, we uniformly sampled 15
frames for each trash level (0%, 10%, 30%, 50%, 70%,
and 85%), resulting in a total of 105 labeled images. This
dataset was split into 80% training and 20% validation sets,
yielding 84 training and 21 validation images.

We fine-tuned all layers of a YOLOvVS model without
freezing the pretrained weights. This decision was moti-
vated by the domain gap between the COCO dataset, on
which YOLOvS5 was originally trained, and our thermal
imagery. Unlike RGB images, thermal data lacks color
information and exhibits distinct noise characteristics,
necessitating end-to-end adaptation of the model. Since our
task involves only a single object class, full fine-tuning was
expected to outperform partial transfer learning.

Model performance was evaluated using validation
precision and recall (Equations [] and [3). In particular,
achieving perfect recall was prioritized to ensure that no
trash bins were missed. We also report the Mean Average
Precision at IoU thresholds of 0.5 (mAP@0.5) and over
a range of thresholds from 0.5 to 0.95 (mAP@0.5:0.95),
which collectively provide a robust measure of detection
performance. Furthermore, predicted bounding boxes were
visually compared against manual annotations to assess
qualitative accuracy.

The trained model was then deployed on a separate test
set comprising 2,417 thermal frames not used during train-
ing. Detected bounding boxes were used to crop bin re-
gions from these images, forming the input for downstream
organic waste quantification.

3.4. Organic Waste Quantification

We experimented with three different quantification
models, each trained on a dataset of carefully labeled ther-
mal images of trash bins collected in a controlled laboratory
setting. These models are designed to estimate the organic
waste content within each bin, serving as a composition
quantification step following bin detection. The bins are
first localized in thermal images using a YOLOvS5-based
detection model, after which the corresponding cropped
regions are passed to the quantification model for organic
content estimation. A total of 4,972 examples were divided
into training, validation, and test sets using an 80:10:10
split.

As a baseline, we employed a standard convolutional
neural network (CNN) for estimating the organic content in
trash bins using thermal imagery. Building on this, we fine-
tuned a ResNet-18 model pretrained on ImageNet to im-
prove feature extraction capabilities. Finally, we explored a
transformer-based architecture by fine-tuning ViT-B/16 for
the same task. These models were trained as regressors to
predict the proportion of organic waste present within each
detected bin. The performance of each model was eval-
uated using mean squared error (MSE) loss mentioned in

equation{I]

N

MSE — % > (Q;E’red - Q?“C)Q (1)

1=1
Where:

. Qgred = Predicted quantity of organic waste in image 1,

* Q7" = Ground truth quantity of organic waste in im-
age i,

e N = Total number of evaluated images.

3.4.1 Baseline: Vanilla CNN Model

For the baseline we have implemented a baseline CNN
model that consists of five convolutional blocks followed by
fully connected layers. Each convolutional block includes a
convolutional layer with a 3 x 3 kernel, batch normalization,
ReLU activation, and max pooling to reduce spatial dimen-
sions. The model was trained using the Adam optimizer.

The input and output shapes for each block are shown in
Table

The final feature maps are flattened and passed through
three fully connected layers, ending with a sigmoid activa-
tion to produce the final output.

This architecture effectively extracts features while re-
ducing spatial size, enabling efficient learning for the target
task.



Block Input Shape Output Shape
Block 1 (3, 84,79) (16, 42, 39)
Block2 (16,42, 39) (32,21, 19)
Block3 (32,21, 19) (64, 10,9)
Block4 (64, 10,9) (128, 5,4)
Block 5  (128,5,4) (256, 2, 2)

Table 1: Input and output tensor shapes at each convolu-
tional block.

3.4.2 Finetuned ResNet-18 Model Approach

Another choice of model is adopting the architecture of the
ResNet-18 [3]] without using the pretrained weights and the
classification layer is changed to a linear layer and sigmoid
function (Equations [2] and [3). The loss function used is
mean squared error|[I]

§=o0(w'x+b) )
1
o(a) = ;o= 3)

e x: feature vector obtained from the model without the
classification layer.

* w: learnable weight vector.
¢ b € R: Learnable scalar bias.
¢ o(-): Sigmoid function.

* y: Final predicted percentage.

3.4.3 Finetuned ViT-B/16 Model Approach

The third choice of model is adopting the architecture of
ViT-B/16 proposed by Dosovitskiy et al. [1] without us-
ing the pretrained weights and the classification layer is
changed to a linear layer and sigmoid function (Equations 2]
and[3)). The loss function used is mean squared error|[I}

4. Results and Discussion
4.1. Trash Bin Detection Model

The model, referred to as trash_bin_detector, achieved a
validation precision of 99.7% and a recall of 100% (Equa-
tions @] and [3)). The Perfect recall reflects the intentional
design of the dataset, which includes only images with
trash bins to directly evaluate detection performance. The
model successfully detected all annotated instances. Ta-
ble 2] summarizes performance in terms of mAP@0.5 and
mAP@0.5:0.95. To qualitatively assess detection consis-
tency, we compared predicted bounding boxes in the vali-
dation set with manual annotations. As shown in Figure 3]

Metric | Precision | Recall | mAP@0.5 | mAP@0.5:0.95
Score 99.7 100.0 99.5 86.4

Table 2: Validation performance of Trash Bin Detection
Model (trash_bin_detector) in %

(a) Manual annotation (b) Model prediction

Figure 5: Comparison of manual and predicted bounding
boxes for a thermal frame.

the model-generated bounding boxes are well aligned with
ground truth labels across multiple viewpoints and fill lev-
els.

.. Ntp
Precision = ———— “4)
Ntp + Npp
Np
Recall = ———— )
Ntp + Npn

Where:

e Npp: Number of correctly detected trash bins. The
predicted bounding box overlaps with a ground truth
bin with Intersection-over-Union (IoU) > 0.5.

e Npp: Number of incorrect detections (e.g., spurious
detections in background regions, or IoU < 0.5 with
any actual bin).

* Ngn: Number of missed detections (e.g., The model
failed to detect a visible bin in the frame).

From the separate test set consisting of 2,522 thermal
frames not used in training, the trained model successfully
detected trash bins in 2,486 frames with average confidence
level of 81.95%. All 36 failures corresponded to bins with a
70% fill level and were excluded from subsequent analysis.
Bounding boxes from successful detections were matched
with their corresponding thermal images and used to gener-
ate cropped bin images for downstream analysis.

4.2. Organic Waste Quantification Model

Table [3] summarizes the training and test losses for the
three different quantification models. All models demon-
strate strong performance with minimal differences be-
tween training and test loss, indicating effective generaliza-
tion and no signs of overfitting. However, notable differ-



Model Training MSE Loss | Test MSE Loss
Baseline CNN 1.66e-5 3.46e-5
Finetuned ResNet-18 2.80e-5 9.00e-6
Finetuned ViT-B/16 1.30e-5 9.80e-5

Table 3: Comparison of training and test MSE loss across
different quantification models.

ences in test performance reveal important insights about
each model’s characteristics.

The finetuned ViT-B/16 model, despite achieving the
lowest training loss, exhibited a substantially higher test
loss compared to the CNN-based models. This behavior
is likely due to the Vision Transformer’s reliance on self-
attention mechanisms and its relatively weak inductive bi-
ases such as locality and translation equivariance, which are
inherent in convolutional architectures. As a result, ViTs
generally require very large datasets to generalize well.
Given the limited size of our labeled dataset, the ViT model
was more prone to overfitting, leading to poorer generaliza-
tion on unseen data.

Conversely, the finetuned ResNet-18 outperformed the
baseline CNN model, achieving lower test loss despite sim-
ilar training loss levels. This improvement can be attributed
to ResNet’s deeper architecture and use of residual connec-
tions, which enhance gradient flow and enable learning of
more complex, robust features. These characteristics help
ResNet-18 better capture discriminative patterns relevant to
organic waste quantification, resulting in superior general-
ization compared to the simpler baseline CNN.

Overall, these results suggest that while transformer-
based architectures hold promise, convolutional mod-
els—especially those with advanced designs like
ResNet—are currently better suited for our relatively
small dataset size and task.

To visualize model performance, we plotted the pre-
dicted percentages against the corresponding ground truth
organic waste levels (0%, 10%, 30%, 50%, 70%, and 85%)
in Figure[6 for the three models. A box plot overlay at each
true percentage level captures the distribution of predicted
values. This visualization serves two main purposes: (1)
it allows qualitative assessment of prediction accuracy by
showing how closely the predicted values cluster around the
ground truth, and (2) it reveals any biases or variance in pre-
dictions across different levels of organic content. Ideally,
tight, symmetric box plots centered near the ground truth
indicate consistent and unbiased model performance.

From the visualization, the baseline CNN and finetuned
ResNet-18 models show tightly clustered predictions with
low variance across most fill levels, particularly at interme-
diate and high percentages. This consistency reflects their
robust ability to estimate organic content accurately. The
ResNet-18 predictions tend to be slightly closer to the true

Boxplot of Predictions Grouped by Real Percentages- Vanilla CNN Model

entage (%)

Predicted Perc;

Real Percentage (%)

Boxplot of Predictions Grouped by Real Percentages for Finetuned Resnet-18 Model

———
°

Predicted Percentage

011612 500000238418579

01192092896 o5
Real Percentage

Boxplot of Predictions Grouped by Real Percentages for Finetuned ViT Model

°

Predicted Percentage

) 010000000145011612 _ 0.30000001192092896
Real Percentage

0699999988079071 0.8500000238418579

Figure 6: Box plots of ground truth versus predicted organic
waste percentages for the three quantification models.

values, corroborating its superior quantitative performance
shown in Table[3l

In contrast, the ViT-B/16 model exhibits greater spread
and occasional deviations from the ground truth, consistent
with its higher test loss and reduced generalization. This
suggests that, despite good training performance, the
ViT struggles to maintain stable predictions on unseen
data, likely due to dataset size limitations and weaker
inductive biases. Overall, the box plots reinforce the
quantitative results, confirming that convolutional architec-
tures—especially ResNet-18—provide more reliable and
accurate organic waste quantification on our thermal image
dataset.

Figure [/| illustrates the prediction results of the best-
performing quantification model, the finetuned ResNet-18,
on the test set. The plot shows that the predicted percent-
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Figure 7: Results for the Best Performing Quantification
Model-Finetuned ResNet-18 Model On the Test Set

ages closely match the actual ground truth values for all test
examples (a subset of the total set is plotted), demonstrat-
ing the model’s high accuracy in estimating organic waste
content from thermal images. This visual evidence corrob-
orates the quantitative metrics presented earlier and under-
scores the model’s robustness and generalizability for prac-
tical applications in organic waste quantification.

5. Conclusion

This project points a novel direction for indirectly as-
sessing urban public service usage by quantifying organic
waste without collecting any personally identifiable infor-
mation. By detecting trash bins and estimating the level
of organic waste, we aimed to offer insights for tracking
homelessness and managing the urban environment. We
developed a two-stage computer vision pipeline using
thermal video data: the first stage performs object detection
to localize trash bins, and the second stage estimates
organic waste levels through regression-based analysis of
cropped thermal images.

We used a YOLOv5-based model trained on the man-
ually labeled thermal imagery leveraging Labellmg to
perform trash bin detection. The detected bounding boxes
were then used to extract regions of interest for the sub-
sequent quantification stage. For the quantification stage,
we experimented with multiple deep learning algorithms
including a baseline CNN, a fine-tuned ResNet-18, and a
fine-tuned Vision Transformer (ViT-B/16). This allowed
us to evaluate trade-offs in accuracy while choosing the
optimal model. Among these, the CNN and ResNet-18
achieved particularly low prediction error and demonstrated
strong alignment with ground truth across a wide range of
fill levels.

Overall, our models achieved high precision and recall
in bin detection and demonstrated strong generalization
in estimating waste content across varying fill levels. The

successful integration of object detection and organic
waste quantification modeling represents a meaningful
step towards a scalable, real-time monitoring solution.
Our results suggest the potential of thermal video and
deep learning to address data gaps in public infrastructure
planning while respecting individual privacy.

6. Future Works
6.1. Translation to Real-World Settings

To extend the applicability of our system, we plan to
fine-tune the trash_bin_detector model on videos collected
in real urban environments. Unlike our controlled exper-
imental setup, public trash bins in practice contain mixed
organic and inorganic waste, and exhibit greater variation
in bin shapes and surrounding scenes. Fine-tuning with di-
verse, real-world data will allow the model to better handle
domain shifts and increase its robustness under less con-
strained conditions.

6.2. Dataset Diversity

Our current dataset was carefully constructed under con-
trolled conditions to ensure clarity and consistency during
training. However, it includes only two bin types and lim-
ited waste configurations, which may not fully capture the
diversity of public waste disposal. Expanding the dataset
to include a wider range of bin shapes, mixed waste con-
tent, and environmental backgrounds will help improve the
generalization ability of the model and reduce overfitting to
specific visual patterns.

6.3. Multimodal Fusion and Noise Handling

While our initial attempts to project bounding boxes be-
tween domains were limited by spatial misalignment and
differing resolutions, current approach show reliable de-
tection accuracy using thermal video. We expect the fu-
ture architectures could explore joint processing using fu-
sion or cross-modal attention. Furthermore, thermal videos
recorded in outdoor environments may include domain-
specific noise such as heat reflections or ambient temper-
ature interference. Incorporating denoising strategies and
robust data augmentation can further enhance model stabil-
ity in real-world deployments.

7. Contributions and Acknowledgments

7.1. Code

The code can be accessed through this link: CS231n
Project.
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sition predictions, analyzed predictions results, participated
in writing the report.

Pin Li: Collected data, set up the finetuned ResNet-18
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